News from Schwing Bioset

Schwing Bioset is Exhibiting at WEFTEC 2017

 

Schwing Bioset, Inc. (SBI) is looking forward to exhibiting at the 2017 WEFTEC Event in Chicago on October 2-4. 

Please be sure to stop by our booth (#2007) while you're on the exhibit floor. We will be displaying a dewatering screw press, as well as two new pieces of equipment.

Our new Membrane Bioreactor (MBR) filtration systems for water and wastewater utilize hollow fiber membranes. The unique end-free cartridge design provides an economical alternative to traditional longer fibers.

We are also debuting our new SBI Solutions system. This pre-packaged system is configurable to produce either Class A or B Biosolids in a convenient, pre-engineered skid mounted unit. The system is a compact, modular unit including a piston pump combined with the Bioset process, and optional screw press dewatering capabilities for an all-in-one package.    

MBR.png  SBI Solutions.png

 

 

 

 

 

 

 

The SBI team members attending the show include Executives, Regional Sales Managers, Aftermarket Support personnel, and more. If you'd like to meet with one of our team members, please email us and we'll put you in touch with the appropriate person.

Read about our Nutrient Removal and Struvite Harvesting, Dewatering Equipment, Piston Pumps, Bioset Process and Class A Biosolids, our new products, and other products hereand then stop by booth 2007 to learn more!

Visit the conference website to view the event details and exhibition map: http://www.weftec.org. Here is the Schwing Bioset listing for the show.

We hope to see you at WEFTEC 2017!


For more than 30 years, Schwing Bioset, Inc. has been helping wastewater treatment plants, mines, and industrial users by engineering solids handling solutions. Schwing Bioset’s custom-engineered solutions can be found in over a thousand facilities across North America and around the world.

Our products include, among others, sludge, industrial, and tunnel piston pumps, screw presses, nutrient removal and management, membrane bioreactors, sliding frame and push floor silos, fluid bed drying products, Bioset process for Class A Biosolids, container wagons, and screw conveyors. We also offer on-site demos, spare parts and equipment maintenance services, and training. 

 

Read More Schwing Bioset  News and Blog Articles

 Download Our Brochures    or Application Reports

 

 

Tags: Bioset Process, Piston Pumps, Events, WEFTEC, Screw Press, Membrane Bioreactor

Schwing Bioset Onsite Demonstrations Help Find Solutions

 

Written by Dan Anderson

The past year has been full of onsite demonstrations and we are looking forward to another busy year for our demo fleet.

In 2016, we completed several successful onsite demos for solids pumping, the Bioset process for Class A Biosolids, nutrient removal/struvite recovery, and screw press dewatering.

Our demo program is a great way to see first-hand how our equipment can help your plant. Demos can run anywhere from a few days to a few months, depending on the needs of the plant.

Whether it is pumping material with ease, producing a beneficial re-use product, dewatering sludge efficiently, or removing unwanted nutrients to help your plant and the environment, Schwing Bioset has a vast array of knowledge, tools, and equipment to help your plant find the right solution.

For more information on our demos, please contact Chuck Wanstrom at cwanstrom@schwingbioset.com or 715.247.3433.

Schwing Bioset Class A Biosolids Demo Unit  Schwing Bioset Screw Press Demo Unit

 

 

Tags: Bioset Process, Biosolids Handling, Screw Press, Bioset Demo, Screw Press Demo

City of Orlando WWTP Utilizes Schwing Bioset Piston Pumps in Class AA Process

 

City of Orlando, FL, Conserv II WWTP Utilizes Schwing Bioset KSP 25 Piston Pumps in Class AA Biosolids Process

Written by Tom Welch, December 14, 2016

The City of Orlando, FL, Conserv II WWTP became aware of the Schwing Bioset process and immediately saw the potential it had to meet all of their requirements for both short and long-term implementation.  In addition, Schwing Bioset could offer conversion of the stabilized Biosolids to a licensed commercial fertilizer product.  The City staff visited current Bioset operations in Florida and were impressed with what they saw and with the simplicity of the process.  The City conducted an in-house feasibility study that considered Bioset and other technologies and concluded that Bioset was the preferred treatment process.

The current dewatering facility has four belt filter presses that discharge onto two belt conveyors that converge onto one common belt conveyor that takes the dewatered Biosolids to truck loading.  The decision was made to move away from the common belt conveyor to make the process more robust.  A KSP 25 piston pump was added at the end of each belt conveyor.  The two pumps are utilized to transfer the dewatered cake to the Bioset (Class A alkaline process).  The Bioset process also utilizes a third KSP 25 pump as the heart and soul of the system to blend the chemicals needed for the Class A process and pumps the end product into a plug flow reactor and ultimately out to two truck loading areas.  These pumps are programmed to work together to make sure that a consistent flow of Biosolids can be treated to Class A status through the reactor.

To learn more about our pumps and Bioset process, or this project specifically, contact this blog’s author, Tom Welch, and/or visit our Products page. For other inquiries, call 715.247.3433, visit our website, or find us on social media.

Schwing Bioset Piston Pump

 

Read More Schwing Bioset  News and Blog Articles

 Download Our Brochures    or Application Reports

 

 

Tags: Bioset Process, Piston Pumps, Class 'AA' Biosolids, Wastewater Treatment

Orlando Selects Schwing Bioset over Anaerobic Digestion for Class AA Biosolids

 

Authored by Tom Welch, Southeast Sales Manager for Schwing Bioset, Inc., and Vic Godlewski Jr., PE, Wastewater Division Manager, City of Orlando

May10, 2016

The City of Orlando has been working for several years to move away from Class B land application of Biosolids.  The City explored use of an experimental technology that would almost fully oxidize Biosolids leaving very little residuals for disposal.  While investigating this experimental technology, the City delayed renovations to the anaerobic digestion systems at their Conserv II Water Reclamation Facility (WRF).  Ultimately it was determined that the oxidation technology was not yet commercially viable, at which point they could no longer postpone biosolids treatment improvements.  Orlando engaged the services of a Consulting Engineer to evaluate the digesters and prepare project cost estimates from simple renovation to Class A TPAD with sidestream treatment and combined heat and power.  The estimated project costs were over $40 million and climbing.  Since Orlando believes that the market is going to deliver better options than anaerobic digestion in the future, they began to look for interim options that could be implemented relatively quickly at low capital cost investment; improve their Biosolids treatment, potentially eliminate the need for land application, and not substantially increase O&M costs.  That was a tall order!

The City became aware of the Schwing Bioset process and immediately saw the potential it had to meet all of their requirements for both short and long-term implementation.  In addition, Schwing Bioset could offer conversion of the stabilized Biosolids to a licensed commercial fertilizer product.  The City staff visited current Bioset operations in St. Petersburg as well as other locations in Florida and were impressed with what they saw and with the simplicity of the process.  The City conducted an in-house feasibility study that considered Bioset and other technologies and concluded that Bioset was the preferred treatment process.

Schwing Bioset offered a Design Build approach that was very appealing.  However, due to the City’s procurement constraints this path was not available. To speed up project delivery the Bioset process equipment was purchased directly by the City and installation was competitively bid.

Orlando_Conserv_II_image_3.jpg

Orlando_Conserv_II_image_2.jpg

As shown in the photos above, the Bioset equipment is currently being installed at the Conserv II facility and is scheduled for startup in the summer of 2016.  Schwing Bioset has a sister company, Biosolids Distribution Services (BDS), that manages Class AA Fertilizer Grade Biosolids in the state of Florida.  They have marketed in excess of one-million wet tons of Class AA fertilizer in the state of Florida over the last 10 years.  BDS will be managing the Biosolids produced at the Orlando Conserv II facility when the Bioset process becomes operational.

To learn more about our Bioset process or this project specifically, contact this blog’s author, Tom Welch, and/or visit our website here: SBI Bioset Process. For other inquiries, call 715.247.3433, visit our website, or find us on social media.

 

Download Our  Bioset Process Brochure

 

Tags: Bioset Process, Class 'AA' Biosolids, Wastewater Treatment, Biosolids Distribution Services, Commercial Fertilizer

Bioset Demo Confirms Direction for New Class A Biosolids Equipment at Russellville WWTP

 

Written by Lance Bartlett, Utility Engineering Manager for City Corporation and Tom Welch, Southeast Regional Sales Manager for Schwing Bioset, Inc.

April 25, 2016

 

In early 2015, City Corporation, the commission established by the City of Russellville to operate the municipal water system, completed a construction project to abandon existing fixed film treatment facilities and convert the wastewater treatment plant to a denitrifying activated sludge facility.  Activated sludge technologies produce more sludge than fixed film and initial calculations predicted an increase of 6 to 7 times the current production rate when operated at the design capacity of the facility.

City Corporation had processed sludge through aging aerobic digesters and produced a Class B biosolid under 40 CFR 503 that was then dewatered and land applied to three nearby fields.  Two of the three permitted fields were no longer available, leaving only 49 acres for use.  The increase of sludge production was predicted to require around 160 acres.

The expected increase in sludge production and lack of land available for land application prompted staff to explore options.  The alternatives explored included composting, additional aerobic digesters, dryers, and the Bioset process from Schwing Bioset, Inc. (SBI). The Bioset process was selected for piloting in February and March of 2015 due to its low cost, simple operation, and the high quality Class A product that it produces.  The lone concern was with respect to the increase in volume due to the addition of chemicals, and staff wanted to get the new process up and running to obtain empirical data on sludge volume.  The engineering firm performing the preliminary study had built in a large contingency due to not being familiar with the Bioset technology and the uncertainty in sludge volume, thus raising concerns that the Bioset technology would be the proper process for the future of the Russellville WWTP.  Ultimately the volumetric increase was less than 10%, and with the Class A designation the number of outlets and demand for the material exceeds production rates.

Russellville_Bioset_3.jpg Russellville WWTP_Bioset Process_Schwing Bioset

Following that successful pilot test, in April of 2015, Schwing Bioset agreed to continue to lease the pilot machine under a monthly contract basis for the sludge handling process.  By the fall, City Corporation had a good feel for their solids production and had a great experience with the Bioset full scale pilot equipment.  Given the years of struggling with the Class B sludge process, management and staff were very pleased with the Class A process and end product and the thought of returning to a Class B process was taken off the table. With all the uncertainty taken out of the equation, staff was ready to make a decision and chose to move forward with a permanent Bioset installation.  City Corporation and Schwing Bioset continue to operate under a contract that allows City Corporation to operate the pilot unit until the permanent unit is installed and operational.  This arrangement allows City Corporation to manage their sludge and operate the plant in accordance with the design parameters, keeping the facility in compliance with the ADEQ, which otherwise would not be possible.  The new facility is anticipated to be operational in mid-October 2016.  The current digester will only be used as a sludge holding tank, thus reducing the power consumption needed for complete aerobic digestion to meet Class B standards, and allowing just WAS sludge to be converted to Class A EQ fertilizer through the Bioset process.

To learn more about our Bioset process or this project specifically, contact this blog’s author, Tom Welch, and/or visit the SBI Bioset Process page. For other inquiries, call 715.247.3433, visit our website, or find us on social media.

Download Our  Bioset Process Brochure

 

Tags: Bioset Process, Class AA/EQ Biosolids, Wastewater Treatment, Lime Stabilization, Bioset Demo

How Transitioning to Class A Biosolids Saves Money

 

Published in TPO Magazine, February 2016. Written by Larry Trojak.

 

A southwest Florida treatment plant turns to lime stabilization to create Class A biosolids for land application and cuts handling costs significantly.

Cost-effective handling of biosolids is essential to clean-water plants’ economic and environmental performance.

The Immokalee Water and Sewer District in Florida faced a biosolids challenge in 2006. The district had been using drying beds to create Class B biosolids and spending about $500,000 a year to dewater and haul excess material from that process to a landfill.

Facing a change in regulations on land application of Class B material, and wanting to reach the biosolids’ full economic potential, the district looked at alternatives. The ultimate solution was a facility redesign centered on using the Bioset process (Schwing Bioset) to create Class A biosolids. As a result, the district has reduced handling costs by more than two-thirds and produces a Class A product for beneficial use.

Anticipating change

Located about 30 miles southeast of Fort Myers, the heavily agricultural Immokalee district is home to about 24,000 residents. Its wastewater treatment plant was expanded in 2013 from 2.5 mgd to 4.0 mgd design capacity. Until fairly recently, it generated 23,500 gallons of Class B biosolids per day at 1 to 1.5 percent solids.

Gary Ferrante, P.E., an engineer with the Greeley and Hansen engineering firm, says a number of factors in 2006 led the district to review its biosolids operation. “Immokalee’s plant was originally designed with a half-dozen drying beds in which a Class B biosolids was created and used on permitted area farms,” he says.

“While that was effective, the facility is next to a school, which repeatedly complained about students’ health risks and odor. The district later learned that the U.S. Department of Agriculture and the Florida Department of Environmental Protection were considering changes to biosolids land application regulations (passed in 2010 as Florida Biosolids Regulation Chapter 62-640 F.A.C.). All that prompted the district to hire a consultant to look at alternatives.”

Lots of options

Based on recommendations from the consultant’s report, in 2007 the district contracted with Synagro Technologies to dewater the Class B biosolids and haul it to a landfill more than 100 miles away. In time, rising prices and an increase in biosolids volume raised annual costs from $309,000 to more than $470,000, providing incentive for the district to pursue other options.

“Working with the district, we put together a couple of proposals and a couple of scenarios within each proposal,” says Ferrante. “The first one covered the design/build/finance of a biosolids facility at the existing location. Options under this plan included handling material from Immokalee only, as well as accepting material from Collier County and making Immokalee a regional processing facility. The second proposal had an outside entity leasing land from the district and constructing a Class A regional processing facility on it.”

An option under that proposal included a continuation of the contract dewatering program while the regional facility was taking shape. In the end, the district chose to establish a turnkey processing facility for its own biosolids sludge only and selected the Bioset process to deliver Class A material.

Schwing Bioset - Bioset Process  Schwing Bioset - Bioset Process

Class A operation

At the new facility, material exits the primary treatment facility’s sludge holding tanks at 1.5 percent solids and is fed directly to a high-performance screw press, selected for a number of reasons, including its relatively compact design.

“Because of the limited availability of usable land, a small footprint for the entire biosolids system was a major consideration, and the Bioset screw press fit in nicely,” Ferrante says. “We’ve found it to be an outstanding dewatering tool, yet extremely efficient in power usage.

“The belt press we looked at would have taken the material from 1.5 or 2 percent solids up to 8 to 10 percent. A centrifuge might get that up to 20 percent, but the electricity costs would be much higher. The screw press takes the material up to 16 percent solids. It uses twin augers and a changing pitch on the screws to advance the material and remove the water. Because it takes far less energy to turn those two screws than to power a centrifuge, the savings in power consumption can be significant.”

Another feature is that district personnel can wash the screw press down while it remains operational, says Michael Castilla, service technician 1: “The Bioset screw press has an automated self-cleaning function which in itself is nice. However, when we have a situation that calls for additional cleaning, we can simply push a button and a cleaning cycle will start. That’s a bonus. To shut a press down for maintenance or repair could cost us a half-day’s performance.”

Positive reaction

After dewatering, untreated biosolids are taken via screw conveyor to a twin-screw mixer in which quicklime and sulfamic acid are added. The mixing resolves issues such as unreacted lime in the final product and yields a highly homogeneous material. From the mixer, a Schwing Bioset KSP-10HKR pump feeds material into a 56 1/2-cubic-foot reactor in which heat from the acid and quicklime reaction raises the pH, stabilizing the mixture and creating a product that meets both Florida Chapter 503.33 and U.S. EPA Class A requirements.

“Retention time in the reactor is about 30 to 45 minutes at temperatures in the range of 122 degrees Fahrenheit,” says Ferrante. “The plant wastes sludge for 16 hours a day, consistently generating about­­­­­ 11 dry tons of the Class A material weekly and doing so at a markedly lower cost than for outright hauling and landfilling.”
Castilla adds that the system’s ease of operation was also key to getting up to speed quickly.

“It is very intuitive and simple to operate,” he says. “However, Schwing Bioset still went to great lengths to ensure that people involved in day-to-day operation are comfortable with it, have a handle on the maintenance routines, and so on. Ian Keyes from their Wisconsin office spent time here mentoring me to such a degree that there’s very little about the system I don’t understand.”

The Class A material exits the system, is loaded onto a manure spreader and taken to an area field where it is applied in place of fertilizer. Eliminating those fertilizer costs alone has saved about $50,000 per year.

In addition to lower costs, the district benefits from a much cleaner, less maintenance-intensive, more environmentally friendly operation. Dust from the lime-based process is controlled using hard-piped or totally enclosed components. Odorous air is contained by the pressurized reactor and then captured and scrubbed under a collection hood before release.

Schwing Bioset - Biosolids Hauling    Schwing Bioset - Biosolids Hauling

Room to grow

The district’s biosolids plant was designed with ample space to install a second identical processing line in case the regional concept becomes a reality. “One of the most important aspects of this system is its ability to accommodate the changes a regional operation would entail,” says Ferrante. “Things like fluctuations in the percentage of solids, increases and decreases in throughput, and compatibility with biosolids from aerobic or anaerobic digestion processes without modification, are all within its design capability.

“Simply put, the district is well positioned to have its wastewater treatment needs met for the foreseeable future. After the $2 million design/build/finance contract was awarded, the district, seeing itself in a good financial position, opted to pay that cost out of pocket, rather than financing it over 20 years.”

The annual operating cost for the new system is about $130,000 a year, including chemicals and electricity. With estimated savings of $370,000 per year over landfilling, the system will pay for itself by about mid-2019.

“This was a case in which Immokalee, a small independent special district with a serious financial headache, took real initiative in getting things done,” says Ferrante. “They will be the beneficiaries of those sound decisions for decades to come.”

 

To view this story on TPO Magazine's website, click here.

To learn more about Schwing Bioset and the Bioset Process, click here.

 

 

Tags: Class 'A' Biosolids, Bioset Process, Piston Pumps, Bioset System, Wastewater Treatment, Fertilizer, Screw Press

Screw Press and Bioset Demo Leads to Treatment Plant Expansion

 

Written by Tom Welch, September 10, 2015

The Springfield, IL, Metro Sanitary District (SMSD) Sugar Creek Plant is going to be expanding over the next two years.  They currently have no dewatering capability and they treat their liquid sludge with lime and liquid land-apply on their own fields onsite at the plant.  In June of 2013, Schwing Bioset was invited to run a dual demo of their screw press and Bioset systems.  The pilot study was conducted for two weeks where the Waste Activated Sludge (WAS) was dewatered with the screw presses and then converted to a Class A EQ product through the advanced alkaline stabilization Bioset process.  Crawford, Murphy, and Tilly Engineers coordinated the pilot study for the District.

Prior to the pilot study, the plant operations team was leaning toward using belt presses for their future dewatering needs.  They had familiarity with belt presses and they were concerned that screw press technology did not have the capability to meet their requirements of 2660 dry pounds per hour without having to install a large number of screw press machines.  They were basing their concerns on historical screw press throughput capability based on their market research.

Springfield_Demo_Image_1-1

(Pilot Study Setup at SMSD Sugar Creek Plant)

During the pilot study, the Schwing Bioset team brought their FSP 600 screw press machine to dewater the partially aerobically digested WAS.  The goal was to dewater the material to the highest percent solids, with an excellent capture rate, and also with the least amount of polymer consumption.  The dewatered product would then be passed along to the mobile Bioset operation, which is an advanced alkaline stabilization process that can produce a Class A EQ Biosolid end product that can be utilized as a fertilizer or a soil amendment. 

The first week of the demo was utilized to optimize the screw press performance, and the second week to monitor continued performance of the screw press while utilizing the Bioset operation to produce a Class A EQ product. The purpose of this was to monitor the product over a couple month period to determine the stability of the Class A EQ product at the Springfield plant.  Over the two weeks, the FSP 600 screw press unit produced a dewatered product of 30% solids on average, even while operating the machine at 130-150% of design throughput capability.  After polymer optimization, the end result was realized with 14 pounds of active polymer per ton and the capture rate was above 95% during the entire two week period.  During the second week of the pilot, the Bioset system was utilized the entire time and was successful in producing the Class A EQ product.

Based on the successful results of the pilot, SMSD gave Crawford, Murphy, and Tilly the direction to design the new biosolids handling facility to include two high-performance screw presses, each capable of dewatering 1330 dry pounds per hour.  Although they liked the simplicity of the Bioset Class A operation, they were uncertain if the need for Class A was justified for the new facility.  They settled on a Class B Bioset system that utilizes all of the components of the Class A design, except for the reactor.  Space was left in the building to install the reactor in the future should Class A become necessary.  The job bid in December of 2014 and Schwing Bioset received an order for the two high-performance screw presses and the Class B alkalization system in early 2015. 

These FSP 1102 screw presses showcase the capabilities of high-performance screw presses and offer larger plants an appealing alternative to traditional belt filter press or centrifuge dewatering.

To learn more about our screw presses, Bioset process, and/or this project specifically, contact a Schwing Bioset Regional Sales Manager, call 715.247.3433, email us, and/or visit our website here.

Springfield_Demo_Image_2-1

(Class A EQ product at 44% solids)

 

 

Tags: Class 'A' Biosolids, Bioset Process, Alkaline Stabilization, Class AA/EQ Biosolids, Biosolids, Wastewater Treatment, Screw Press, Dewatering

When WWTP Says "No Tanks," Innovative Bioset Process Fills the Gap

 

Schwing Bioset Application Report 17, St. Petersburg, Florida

Written by Larry Trojak, Trojak Communications

Version also published in WE&T Magazine, November 2013

 

Pumps_Snapshot

 

Wear is the unflagging enemy of every wastewater treatment plant. Plant operators can defend against it to the best of their ability; but in the end, time will win out, resulting in breakdowns and the occasional interruption in service. To cope with such occurrences, forward-thinking plants will always have a solid contingency plan in place. For the Southwest Water Reclamation Facility (WRF) serving the Water Resources Department’s southwest sector (including St. Petersburg, FL), their contingency - designed to deal with a pair of worn, aging digester tanks - involved bypassing the tanks entirely and processing biosolids through a Bioset sludge treatment process. Doing so is not only helping them avoid an operational nightmare and additional maintenance and expense, it is allowing them to improve the by-product of that biosolids operation - all at a time when costs to land-apply their “standard” product have skyrocketed. Timing, it seems, really is everything.

 

Decades of Wear

Originally built in 1955 as a four million gallon per day (mgd) facility, the Southwest Water Reclamation Facility (WRF) was literally replaced at the same location with a 20 mgd plant in 1978. It is one of four which serve the greater St. Petersburg area: Plant #1, for the southeast section of the area which includes downtown St. Petersburg; Plant #2, to serve the northeast section of town; Plant #3, for the northwest section of the area and the beach communities; and Plant #4, for the southwest section of St. Petersburg, as well as the incorporated towns of Tierra Verde and Gulf Port. According to Ken Wise, chief plant operator for the Southwest WRF, volumes at each plant are pretty much equal.

“Plant #1 is called the Albert Whitted WRF and it’s a little smaller since there are fewer residents downtown than in other parts of the city,” he says. “But each of the other three plants are 20 mgd facilities and treat roughly the same amount of sewage. Since the upgrade in 1978 we’ve all been running an anaerobic digestion process and creating a Class B product from the biosolids. For us, that approach worked well until time caught up with us in the form of badly-worn digester tanks which were causing odor issues for an adjacent college and residential developments in the area.”

Given that two of the tanks were built in 1955 with the original plant, and the third was added with the expansion more than 35 years ago, the wear factor is not surprising. Wise says other plants in the area were also seeing failures in both the covers and in their structures as a whole.

“We hadn’t had a failure yet, but the Water Resources Department was spending a good deal of money on
upkeep with us,” says Wise. “Under normal circumstances that would have probably sufficed and bought us a few more years. However, due to changing Florida regulations surrounding the land application practices of the Class B biosolids they were producing at the time, the department started seriously looking into alternative biosolids treatment technologies hoping to avoid repairing something that was not only at the end of its life, but also might not be a fit for that new effort.”

 

Repeat Success

Bioset_Snapshot

To find that solution, the department looked at all possible alternatives, an initiative that included conducting pilot projects with various technologies at other locations in the city. One of those, at the Whitted plant, involved installing the Bioset Process sludge treatment system which uses a combination of pH and heat to stabilize the biosolids, thereby eliminating the need for digesters. 

In addition to being extremely low maintenance and operator friendly, Wise says that it had proven quick to implement and very successful there. “Ultimately the decision was made to install another system from Schwing Bioset here at Southwest,” he says. “Installation took place in July of last year (2012) and we were online by August.”

The installation, he adds, went smoothly, despite the fact that the Bioset Process had to be made to fit within the confines of an existing section of the plant rather than in a totally new site.

“The Bioset crew really worked with us to maximize use of the space we had and minimize disruption,” he says. “As a result, we probably have one of the few Bioset systems in which the reactor is raised some ten feet off the floor to fit with an existing opening. Now, sludge comes off the belt presses, is mixed with quicklime and sulfamic acid, and is pumped up into the reactor, where it spends at least 40 minutes at 135°F and achieves a pH of 12.5, before being discharged to the trailers.”

The newly-stabilized sludge is kept in the trailers on-site for 24 hours, at which point a sample is taken to ensure the pH is still in excess of 11.5 as required by Federal regulations. Since going online with the Bioset Process, Wise says the pH has never been less than 12.5.

 

Added Benefits

In addition to the elimination of virtually any odor and the complaints associated with it, it is the end product of the Bioset process - now a Class AA biosolid (the Florida equivalent of Class A-EQ) - which is the real benefit for Wise and his operation.

“In the past, our Class B material was suitable for use on sod farms and pasture lands, but because of its designation would have to be set back from any kind of food crops. By contrast, the Class AA product we get off the Bioset Process can be applied on golf courses, pastures, food crops - pretty much anywhere. In addition, because of a recent change in regulations, the other three area plants still generating the Class B biosolid are now paying an extra $300 more per trailer, while our costs dropped $100 per load. Granted, by adding the lime, the volumes are up about 10%, so the number of trailers we are shipping has increased. But even with that added into the equation, we are still saving 40 percent when compared to the Class B and have a much more usable product,” says Wise.

All of the Class AA material generated at the plant is currently either land applied at a site within an hour of the plant or sold as fertilizer to the local agricultural market. The previous Class B, by comparison, was hauled to sites more than three-hours away where it often found limited use.

 

Tanks for the Memories

The St. Petersburg WWTP has proven to be something of a case study in how to best deal with a set of unfortunate, challenging circumstances. Faced with a pair of failing digesters that were going to require a significant investment to rebuild, and which were creating odor issues for nearby residents, businesses, and students - the plant was able to solve the problems by abandoning the existing tanks and by adopting new technology in their operation. That solution from Schwing Bioset was implemented for less money than the tank rebuild project would have cost, it eliminated the odor issue, and includes the added benefit of processing cake directly to a Class AA biosolid (and gain more flexibility in the beneficial reuse of the end product), resulting in substantial net savings across the board.

"Since bringing in the Bioset System things have definitely settled down around here,” said Wise. “It’s been a great solution for us.” And, it would seem, all the issues created by the failing tanks are just fading memories.

 

To download the entire #17 application report for St. Petersburg, Florida, click here.

To learn more about Schwing Bioset, our products and engineering, or this project specifically, please call 715-247-3433, email marketing@schwingbioset.com, view our website, or find us on social media.

To view a version of this story published in WE&T Magazine, click here.

 

Tags: Class 'A' Biosolids, Bioset Process, Bioset System, Beneficial Reuse, Class AA/EQ Biosolids, Wastewater Treatment, Fertilizer

Schwing Bioset Exhibiting at WEF Residuals and Biosolids Conference

 

June 4, 2015

Schwing Bioset, Inc. will be exhibiting at the 2015 WEF Residuals and Biosolids Conference in Washington, DC, on June 8th and 9th.

Please be sure to stop by our booth (#106) while you're on the exhibit floor.

 

Visit the conference website to view the event details and exhibition map: http://www.residualsbiosolids-wefiwa.org/

Here is the Schwing Bioset listing for the show: http://app.core-apps.com/15rbwe/exhibitors/d4d3b4f759e0e3a5025efd0a3d0e4fc4

Learn more about our Bioset Process and Class 'A' Biosolids, Dewatering Equipment, Pumps, and other products here: http://www.schwingbioset.com/products

 

If you'd like to meet with one of our team members, please contact marketing@schwingbioset.com for the names of the team members who are attending the show.

We hope to see you there!

 

Bioset_Video_Screenshot

 

Tags: Class 'A' Biosolids, Bioset Process, Events, Biosolids, Wastewater Treatment, Pumps, Dewatering

Where Should the "Stuff" Go - Part 2

 

Written by Scott Springer, Director of Sales and Marketing, Schwing Bioset, Inc.

May 29, 2015

Not in My Back Yard vs Solutions – An open discussion on disposal or re-use of Biosolids

Going back to the previous blog post discussing disposal or re-use of Biosolids, again, some of the environmentalists claim that the current US Government regulations (EPA Part 503) on Biosolids is either outdated based on the chemicals in today’s world or that there is an EPA conspiracy to hide the scientific facts from the public, and that somehow, the operators, equipment, and services people are behind it.  When Schwing Bioset posts on the subject, the reply from others is often that we only care about $$$ and profits at the expense of the health of people, animals, etc.

Schwing Bioset typically replies in this manner:

If there is or was a conspiracy, Schwing Bisoet has never been part of it.  I realize that the suppliers and solution providers are easy targets, because we are accessible, but any anger should really be directed at the Government agencies in charge. 
 
If the regulations are truly outdated, then the environmentalist effort needs to be to get the laws changed, not attack the people and companies who are following the current laws.
 
Also, I am not naive to believe that there are no companies out there with less than perfect ethics.  There are documented incidents of some service providers dumping sludge (treated or untreated) where they should not to scam profits.  I agree that there should be anger against these types of companies, but please don’t lump us all into that category.  There are a lot of good people and companies in this industry that want to provide a better world for all of us.  And this is business, even the good people need to make a fair profit in order to continue developing new and better solutions.

 

Schwing Bioset’s Bioset Process achieves Class ‘AA’ Biosolids via the time vs. temperature equation and pH adjustment per the EPA 503 regulations.  From start-up to shut-down, the Bioset Process remains an easy to operate system that is reliable, clean (enclosed), and odor controlled.  With ever-rising energy costs, the Bioset Process stands out as an economical method to producing Class ‘AA’ Biosolids.

For questions or more information on Biosolids or our Bioset Process, please leave a comment on this blog post and we will be sure to reply or contact you, or send an email to marketing@schwingbioset.com.

  

BeneficialReuse_2_4

 

 

Tags: Bioset Process, Beneficial Reuse, Biosolids, Wastewater Treatment